# Bayesian Belief Network 

Phone Message

## V 1.1

## Introduction

## Foundation

## D-separation



Figure 1. Direction Dependent Separation
A set of nodes $E$ d-separates two sets of nodes of $X$ and $Y$ if every undirected path from a node in $X$ to a node $Y$ is blocked given E. A path is blocked given a set of nodes E if there is a node Z on the path for which one of three conditions hold:
(1) Z is in E and Z has one arrow on the path leading in and one arrow out
(2) Z is in E and Z has both path arrows leading out.

For Educational Use Only
Copyright © 2012-2016. All Rights Reserved. Owner of Passion's Theory Website.
(3) Neither $Z$ nor any descendant of $Z$ is in $E$, and both path arrows lead in to $Z$. ${ }^{1}$

To understand the three conditions mentioned above, I will use Figure 4.
(a) Whether Linda is happy or Darnell leaves a message is independent given evidence that there is a message on the answering machine.
(b) Linda being happy and Darnell calling are independent if it is known that Linda leaves a message
(c) Linda being happy and Darnell leaving a message are independent given no evidence at all.


Figure 2. Generic Singly Connected Network. The network is partitioned according to the parents and children of $X$
$\mathcal{E}^{+}$is the causal support for $X$ - the evidence variables "above " $X$ that are connected to $X$ through its parents.
$\mathcal{E}^{-}$is the evidential support for $X$ - the evidence variables "below " $X$ that are connected to $X$ through its children. ${ }^{2}$
function BELIEF-NET-ASK(X) returns a probability distribution over the values of $X$ inputs: $X$, a random variable

## Support-Except(X,null)

```
function SuPPORT-ExCEPT}(X,V)\mathrm{ returns }\mathbf{P}(X|\mp@subsup{E}{X\V}{}
    if EvIDENCE?(X) then return observed point distribution for }
    else
            calculate P}\mathbf{P}(\mp@subsup{E}{X\, \}{-}|X)=\operatorname{Evidence-Except}(X,V
            U}\leftarrow\mathrm{ Parents[X]
            if }\mathbf{U}\mathrm{ is empty
                then return }\alpha\mathbf{P}(\mp@subsup{E}{X\\\}{-}|X)\mathbf{P}(X
            else
                for each U}\mp@subsup{U}{i}{}\mathrm{ in }
                calculate and store P}\mathbf{P}(\mp@subsup{U}{i}{}|\mp@subsup{E}{\mp@subsup{U}{i}{}}{}\backslashx)=\operatorname{SuPPORT-ExcEPT}(\mp@subsup{U}{i}{},X
            return }\alpha\mathbf{P}(\mp@subsup{E}{X\, V}{-}|X) \mp@subsup{\sum}{\mathbf{u}}{}\mathbf{P}(X|\mathbf{u})\mp@subsup{\prod}{i}{}\mathbf{P}(\mp@subsup{U}{i}{}|\mp@subsup{E}{\mp@subsup{u}{i}{}\X}{}
```

function Evidence-ExCEPT(X, V$)$ returns $\mathbf{P}\left(E_{X \backslash}^{-}{ }_{V} \mid X\right)$
$\mathbf{Y} \leftarrow$ Children $[X]-V$
if $\mathbf{Y}$ is empty
then return a uniform distribution
else
for each $Y_{i}$ in Y do
calculate $\mathbf{P}\left(E_{Y_{i}}^{-} \mid y_{i}\right)=\operatorname{Evidence-ExcEPT}\left(Y_{i}\right.$, null $)$
$\mathbf{Z}_{i} \leftarrow \operatorname{Parents}\left[Y_{i}\right]-X$
for each $Z_{i j}$ in $\mathbf{Z}_{i}$
calculate $\mathbf{P}\left(Z_{i j} \mid E_{Z_{i j}} \backslash y_{i}\right)=\operatorname{SUPPORT}-\operatorname{ExCEPT}\left(Z_{i j}, Y_{i}\right)$
return $\beta \prod_{i} \sum_{y_{i}} P\left(E_{Y_{i}}^{-} \mid y_{i}\right) \sum_{\mathbf{z}_{i}} \mathbf{P}\left(y_{i} \mid X, \mathbf{z}_{i}\right) \prod_{j} P\left(z_{i j} \mid E_{Z_{i j} \backslash Y_{i}}\right)$

Figure 3.

$$
\begin{align*}
& \mathcal{P}(\mathcal{X} \mid \mathcal{E})=\mathcal{P}\left(\mathcal{X} \mid \mathcal{E}^{+}, \mathcal{E}^{-}\right)  \tag{1}\\
& \mathcal{P}\left(X \mid \mathcal{E}^{+}, \mathcal{E}^{-}\right)= \frac{\left.\mathcal{P}\left(\mathcal{E}_{X}^{+}\right) \mid \mathcal{X}, \mathcal{E}^{-}\right) \mathcal{P}\left(\mathcal{X} \mid \mathcal{E}^{+}, \mathcal{E}^{-}\right)}{\mathcal{P}\left(\mathcal{X} \mid \mathcal{E}^{+}, \mathcal{E}^{-}\right)}  \tag{1a}\\
& \mathcal{P}\left(\mathcal{X} \mid \mathcal{E}_{X}^{+}\right)= \sum_{u} \mathcal{P}(\mathcal{X} \mid u) \prod_{i} \mathcal{P}\left(u_{i} \mid \mathcal{E} \mathcal{U}_{i} \backslash X\right)  \tag{1b}\\
& \mathcal{P}\left(\mathcal{E}_{X}^{-} \mid \mathcal{X}\right)= \prod_{i} \sum_{y_{i}} \sum_{\mathcal{Z}_{i}} \mathcal{P}\left(\mathcal{E}_{y_{i}}^{-} \mid \mathcal{X}, \mathcal{Y}_{i}, \mathcal{Z}_{i}\right)  \tag{1c}\\
& \mathcal{P}\left(\mathcal{E}_{\mathscr{Y}_{i X}}^{+} \mid \mathcal{X}, \mathcal{Y}_{i}, \mathcal{Z}_{i}\right) \mathcal{P}\left(\mathcal{Y}_{i}, \mathcal{Z}_{i} \mid \mathcal{X}\right)
\end{align*}
$$

Figure 3 is a pseudo-code representation of the approach used to query a Bayesian network. It is a backward chaining algorithm for solving probabilistic queries,

## Message



Figure 4.

$$
\begin{aligned}
L & =\text { Linda } \\
D & =\text { Darnell } \\
M & =\text { Answering Machine } \\
K & =\text { Karen } \\
S & =\text { CynthiaSleep } \\
C & =\text { Cynthia } \\
H & =\text { Happy }
\end{aligned}
$$

## Scenario

$$
\begin{equation*}
\mathcal{E}^{+}=\{ \} \tag{2}
\end{equation*}
$$

$\mathcal{P}\left(\boldsymbol{D} \mid \mathcal{E}^{+}\right)$
The goal here is to find the probability of Darnell leaving a message given the evidence above.

$$
\begin{equation*}
\mathcal{P}\left(D \mid \mathcal{E}^{+}\right)=\sum_{u} \mathcal{P}(D \mid u) \prod_{i} \mathcal{P}\left(u_{i \mid} \mid \mathcal{E} \mathcal{U}_{i} \backslash D\right) \tag{3}
\end{equation*}
$$

For Educational Use Only
Copyright © 2012-2016. All Rights Reserved. Owner of Passion's Theory Website.

$$
\sum_{u} \mathcal{P}(D \mid u) \prod_{i} \mathcal{P}\left(u_{i \mid} \mid \mathcal{E} \mathcal{U}_{i} \backslash D\right)=\mathcal{P}\left(D=t \mid \mathcal{E}^{+}\right)+\mathcal{P}\left(D=f \mid \mathcal{E}^{+}\right)
$$

## $\mathcal{P}\left(L \mid \mathcal{E}^{+}\right)$

The goal here is to find the probability of Linda leaving a message given the evidence above. In the case of Darnell, he will either leave a message or won't It is different for Linda because we have three possible outcomes. This will require that we know the probability of each outcome given the evidence above.

$$
\begin{gather*}
\mathcal{P}\left(L \mid \mathcal{E}^{+}\right)=\sum_{u} \mathcal{P}(L \mid u) \prod_{i} \mathcal{P}\left(u_{i \mid} \mid \mathcal{E} \mathcal{U}_{i} \backslash L\right)  \tag{4}\\
\sum_{u} \mathcal{P}(L \mid u) \prod_{i} \mathcal{P}\left(u_{i \mid} \mid \mathcal{E} \mathcal{U}_{i} \backslash L\right)=\mathcal{P}\left(L=t \mid \mathcal{E}^{+}\right)+\mathcal{P}\left(L=m \mid \mathcal{E}^{+}\right)+\mathcal{P}\left(L=f \mid \mathcal{E}^{+}\right)
\end{gather*}
$$

$\mathcal{P}\left(\mathcal{E}_{L}^{-} \mid L=t\right)$
It is necessary to determine the evidence below Linda given we know that Linda will leave a message. This is done by looking at the evidence variables below Linda that are connected to Linda through its children. Equation (6a) introduces two new variables $\mathcal{V}_{M}$ and $\mathcal{V}_{H}$. They help clarify how to calculate $\mathcal{P}\left(\mathcal{E}_{L}^{-} \mid L=t\right)$. The variable $\mathcal{B}$ is a normalizing constant can be assigned the value of $1 .{ }^{3}$

$$
\begin{equation*}
\mathcal{P}\left(\mathcal{E}_{L}^{-} \mid L=t\right)=\mathcal{B} \times \mathcal{V}_{M} \times \mathcal{V}_{H} \tag{5}
\end{equation*}
$$

## $\boldsymbol{V}_{M}$

Equation (7a) shows that it necessary to use the various probability distributions for some of the random variables above and below $\mathcal{M}$ (answering machine). $\mathcal{P}\left(\mathcal{E}_{M}^{-} \mid m\right.$ ) (the evidence beneath the answer machine for each discrete value of $M$ ) requires the introduction of two new variables: $\mathcal{V}_{\mathrm{K} 1}$ and $\mathcal{V}_{\mathrm{C} 1}$.

$$
\begin{gather*}
\mathcal{V}_{M}=\sum_{m} \mathcal{P}\left(\mathcal{E}_{M}^{-} \mid M\right)  \tag{6a}\\
\sum_{z m} \mathcal{P}(M \mid L, D) \times \prod \mathcal{P}\left(\mathcal{Z} m, j \mid \mathcal{E}_{\mathrm{zm}, . j} \backslash M\right) \\
\mathcal{V}_{M}=\sum_{m} \mathcal{P}\left(\mathcal{E}_{M}^{-} \mid m\right)((\mathcal{P}(m \mid L=t, D=t) \times \mathcal{P}(D=t)+  \tag{6b}\\
\mathcal{P}(m \mid L=t, D=f) \times \mathcal{P}(D=f)) \\
\mathcal{V}_{M}=\mathcal{P}\left(\mathcal{E}_{M}^{-} \mid M=t\right) *(\mathcal{P}(M=t \mid L=t, D=t) \mathcal{P}(D=t)+ \\
(\mathcal{P}(M=t \mid M=t, D=f) \mathcal{P}(D=f))+ \\
\left(\mathcal{P}\left(\mathcal{E}_{M}^{-} \mid M=f\right) *\right.  \tag{6c}\\
(\mathcal{P}(M=f \mid D=t, L=t) \mathcal{P}(D=t)+ \\
\mathcal{P}(M=f \mid D=f, L=t) \mathcal{P}(D=f))
\end{gather*}
$$

$\mathcal{P}\left(\mathcal{E}_{M}^{-} \mid M=t\right)$
Since the random variable $\mathcal{M}$ has two distinct possibilities (True/False), the first case will look at the evidence below the answering machine given the machine has a message on it.

$$
\begin{align*}
\mathcal{P}\left(\mathcal{E}_{M}^{-} \mid M=t\right)= & \mathcal{B} \times \mathcal{V}_{C 1} \times \mathcal{V}_{\mathrm{K} 1}  \tag{7a}\\
\mathcal{V}_{\mathrm{K} 1}= & \sum_{k}  \tag{8a}\\
& \mathcal{P}\left(\mathcal{E}_{k}^{-} \mid K=f\right) \sum_{z \mathrm{k}} \mathcal{P}(K=f \mid M) \times \prod \mathcal{P}\left(\mathcal{Z}_{\mathrm{k}^{\prime} j} \backslash M\right) \\
\mathcal{V}_{\mathrm{K} 1}= & \mathcal{P}(K=f \mid M=t)  \tag{8b}\\
\mathcal{V}_{\mathrm{C} 1}= & \sum_{c}  \tag{9a}\\
& \mathcal{P}\left(\mathcal{E}_{C}^{-} \mid C=t\right) \sum_{z c} \mathcal{P}(C=t \mid M, S) \times \prod \mathcal{P}\left(\mathcal{Z}_{C, j} \backslash C\right) \\
\mathcal{V}_{\mathrm{C} 1}= & \mathcal{P}(C=t \mid M=t, S=t) \times \mathcal{P}(S=t \mid)+ \\
& \mathcal{P}(C=t, M=t, S=f) \times \mathcal{P}(S=f \mid) \tag{9b}
\end{align*}
$$

$\mathcal{P}\left(\mathcal{E}_{\bar{M}}^{-} \mid M=f\right)$

$$
\begin{align*}
\mathcal{P}\left(\mathcal{E}_{M}^{-} \mid M=\right. & f)=  \tag{10a}\\
\mathcal{B}_{\mathrm{K} 2}= & \sum_{k}  \tag{11a}\\
& \mathcal{P}\left(\mathcal{E}_{k}^{-} \mid K=f\right) \sum_{z \mathrm{k} 2} \mathcal{P}(K=f \mid M) \times \prod \mathcal{\mathcal { V } _ { \mathrm { C } 2 } ( \mathcal { Z } _ { \mathrm { k } ^ { \prime } j } \backslash M )} \\
\mathcal{V}_{\mathrm{K} 2}= & \mathcal{P}(K=f \mid M=f)  \tag{11b}\\
\mathcal{V}_{\mathrm{C} 2}= & \sum_{c}  \tag{12a}\\
& \mathcal{P}\left(\mathcal{E}_{C}^{-} \mid C=t\right) \sum_{z c} \mathcal{P}(C=t \mid M, S) \times \prod \mathcal{P}\left(\mathcal{Z}_{C, j} \backslash C\right) \\
\mathcal{V}_{\mathrm{C} 2}= & (C=t \mid M=f, S=t) \times \mathcal{P}(S=t \mid)+  \tag{12b}\\
& \mathcal{P}(C=t, M=f, S=f) \times \mathcal{P}(S=f \mid)
\end{align*}
$$

$\boldsymbol{V}_{H}$

$$
\begin{align*}
\mathcal{V}_{H} & =\sum_{H} \mathcal{P}\left(\mathcal{E}_{H}^{-} \mid \mathcal{H}\right) \sum_{\mathcal{Z H}} \mathcal{P}(H=t \mid L) \prod_{j} \mathcal{P}\left(\mathcal{Z}_{H, j} \backslash H\right)  \tag{13}\\
\mathcal{V}_{H} & =\mathcal{P}(H=t \mid L=f)
\end{align*}
$$

$\mathcal{P}\left(\mathcal{E}_{L}^{-} \mid L=m\right)$

$$
\begin{align*}
& \mathcal{P}\left(\mathcal{E}_{L}^{-} \mid L=m\right)=\mathcal{B} \times \mathcal{V}_{\mathrm{M} 1} \times \mathcal{V}_{\mathrm{H} 1}  \tag{14}\\
& \mathcal{V}_{\mathrm{M} 1}=  \tag{15}\\
& \sum_{m} \\
& \\
& \mathcal{P}\left(\mathcal{E}_{M}^{-} \mid m\right) \sum_{\mathrm{zm}} \mathcal{P}(m \mid D, L) \times \prod \mathcal{P}\left(\mathcal{Z} \mathrm{m}, j \mid \mathcal{E}_{\mathrm{zm}, j} \backslash M\right) \\
& \mathcal{V}_{\mathrm{M} 1}=\sum_{m} \mathcal{P}\left(\mathcal{E}_{M}^{-} \mid m\right)((\mathcal{P}(m \mid D=t, L=m) \times \mathcal{P}(D=t)+ \\
& \\
& \quad \mathcal{P}(M \mid L=m, D=f) \times \mathcal{P}(D=f))
\end{align*}
$$

## For Educational Use Only

Copyright © 2012-2016. All Rights Reserved. Owner of Passion's Theory Website.

$$
\begin{gathered}
\mathcal{V}_{\mathrm{M} 1}=\left(\mathcal{P}\left(\mathcal{E}_{M}^{-} \mid M=t\right) *(\mathcal{P}(M=t \mid L=m, D=t) \mathcal{P}(D=t)+\right. \\
(\mathcal{P}(M=t \mid L=m, D=f) \mathcal{P}(D=f))+ \\
\left(\mathcal{P}\left(\mathcal{E}_{M}^{-} \mid M=f\right) *\right. \\
(\mathcal{P}(M=f \mid D=t, L=m) \mathcal{P}(D=t)+ \\
\mathcal{P}(M=f \mid D=f, L=m) \mathcal{P}(D=f))
\end{gathered}
$$

$\mathcal{V}_{\mathrm{H} 1}$

$$
\begin{align*}
& \mathcal{V}_{\mathrm{H} 1}=\sum_{H} \mathcal{P}\left(\mathcal{E}_{H}^{-} \mid \mathcal{H}\right) \sum_{\mathcal{Z} \mathrm{H}} \mathcal{P}(H=t \mid L) \prod_{j} \mathcal{P}\left(\mathcal{Z}_{H,, j} \backslash H\right)  \tag{16}\\
& \mathcal{V}_{\mathrm{H} 1}=\mathcal{P}(H=t \mid L=m)
\end{align*}
$$

$\mathcal{P}\left(\mathcal{E}_{L}^{-} \mid L=f\right)$
The approach is similar to the one used to calculate $\mathcal{P}\left(\mathcal{E}_{L}^{-} \mid L=t\right)$.

$$
\begin{equation*}
\mathcal{P}\left(\mathcal{E}_{L}^{-} \mid l=F\right)=\mathcal{B} \times \mathcal{V}_{\mathrm{M} 2} \times \mathcal{V}_{\mathrm{H} 2} \tag{17}
\end{equation*}
$$

$\mathcal{V}_{\text {M2 }}$

$$
\begin{array}{r}
\mathcal{V}_{\mathrm{M} 2}=\sum_{m}  \tag{18}\\
\mathcal{P}\left(\mathcal{E}_{M}^{-} \mid m\right) \sum_{z m} \mathcal{P}(m \mid D, L) \times \prod \mathcal{P}\left(\mathcal{Z} \mathrm{m}, j \mid \mathcal{E}_{\mathrm{zm}, . j} \backslash M\right) \\
\mathcal{V}_{\mathrm{M} 2}=\sum_{m} \mathcal{P}\left(\mathcal{E}_{M}^{-} \mid M\right)(\mathcal{P}(M \mid D=t, L=f) \times \mathcal{P}(D=t)+ \\
\mathcal{P}(M \mid L=f, D=f) \times \mathcal{P}(D=f) \\
\mathcal{V}_{\mathrm{M} 2}=\left(\mathcal{P}\left(\mathcal{E}_{M}^{-} \mid M=t\right) *(\mathcal{P}(M=t \mid L=f, D=t) \mathcal{P}(D=t)+\right. \\
(\mathcal{P}(M=t \mid L=f, D=f) \mathcal{P}(D=f))+ \\
\left(\mathcal{P}\left(\mathcal{E}_{M}^{-} \mid M=f\right) *\right. \\
(\mathcal{P}(M=f \mid D=t, L=f) \mathcal{P}(D=t)+ \\
\mathcal{P}(M=f \mid D=f, L=f) \mathcal{P}(D=f))
\end{array}
$$

$\boldsymbol{V}_{\mathrm{H} 2}$

$$
\begin{align*}
\mathcal{V}_{\mathrm{H} 2} & =\sum_{H} \mathcal{P}\left(\mathcal{E}_{H}^{-} \mid \mathcal{H}\right) \sum_{Z \mathrm{H}} \mathcal{P}(h=T \mid L) \prod_{j} \mathcal{P}\left(\mathcal{Z}_{H, j} \backslash H\right)  \tag{19}\\
\mathcal{V}_{\mathrm{H} 2} & =\mathcal{P}(H=t \mid L=f)
\end{align*}
$$

## Verification



Figure 5.

## For Educational Use Only

Copyright © 2012-2016. All Rights Reserved. Owner of Passion's Theory Website.

##  <br> File Options Help <br> JavaBayes starts in Move mode.

 JavaBayes ConsoleTo start editing networks, press the Create button and click on the JavaBayes editor, or load a network using the Network->Open menu.

Loading C:IBayesian\MessagelMessage
File loaded.
To query on a particular node, click on it.
Posterlor distribution:
probability ( "Linda" ) \{ //1 variable(s) and 3 values
table
$0.21581597812097336 \quad / / \mathrm{p}$ (True | evidence ) 0.1920662176597505 // p(Maybe | evidence ) $0.5921178042192763 ; \quad / / p($ False | evidence );

To query on a particular node, click on it.
Posterior distribution:

Figure 6.

$$
\begin{align*}
\mathcal{V}_{M} & =0,03657 \\
\mathcal{V}_{H} & =0.0005 \\
\mathcal{P}\left(\mathcal{E}_{L}^{-} \mid L=t\right) & =1.8325^{E-5} \\
\mathcal{V}_{\mathrm{K} 1} & =.10 \\
\mathcal{V}_{\mathrm{C} 1} & =.77 \\
\mathcal{P}\left(\mathcal{E}_{M}^{-} \mid M=t\right) & =.077 \\
\mathcal{V}_{\mathrm{K} 2} & =.95 \\
\mathcal{V}_{\mathrm{C} 2} & =.0385 \\
\mathcal{P}\left(\mathcal{E}_{M}^{-} \mid M=f\right) & =.036575 \\
\mathcal{V}_{\mathrm{M} 1} & =.040650 \\
\mathcal{V}_{\mathrm{H} 1} & =.2 \\
\mathcal{P}\left(\mathcal{E}_{L}^{-} \mid L=m\right) & =.00813 \\
\mathcal{V}_{\mathrm{M} 2} & =.0527668 \\
\mathcal{V}_{\mathrm{H} 2} & =.95 \\
\mathcal{P}\left(\mathcal{E}_{L}^{-} \mid L=f\right) & =.05012 \\
\mathcal{P}(L \Rightarrow t \mid C \Rightarrow t, K \Rightarrow f, H \Rightarrow t) & =\alpha * .997 * 0.000018  \tag{20}\\
\mathcal{P}(L \Rightarrow t \mid C \Rightarrow t, K \Rightarrow f, H \Rightarrow t) & =.21581
\end{align*}
$$

For Educational Use Only
Copyright © 2012-2016. All Rights Reserved. Owner of Passion's Theory Website.

$$
\begin{gather*}
\mathcal{P}(L \Rightarrow m \mid C \Rightarrow t, K \Rightarrow f, H \Rightarrow t)=\alpha * .002 * 0.00813012  \tag{21}\\
\mathcal{P}(L \Rightarrow m \mid C \Rightarrow t, K \Rightarrow f, H \Rightarrow t)=.1920662177 \\
\mathcal{P}(L \Rightarrow f \mid C \Rightarrow t, K \Rightarrow f, H \Rightarrow t)=\alpha * .001 * 0.50128  \tag{22}\\
\mathcal{P}(L \Rightarrow f \mid C \Rightarrow t, K \Rightarrow f, H \Rightarrow t)=.592117 \\
\alpha=11812.00207 \tag{23}
\end{gather*}
$$

For Educational Use Only Copyright © 2012-2016. All Rights Reserved. Owner of Passion's Theory Website.

## Notes

(1) Russell, Stuart J., and Peter Norvig. Artificial Intelligence: A Modern Approach. Englewood Cliffs, NJ: Prentice Hall, 1995. Print.
(2) Jensen, Finn V., and Thomas Dyhre. Nielsen. Bayesian Networks and Decision Graphs. New York: Springer, 2007. Print.
(3) Nevatia, Ram. Class. University of Southern California, Los Angeles. July-Aug. 2000. Lecture.

