Runge-Kutta Order 4 Approximation

1 Foundation

Before | go further, | want to provide some background and foundation information that will be useful later in
this paper.

1.1 Taylor Series/Taylor Polynomials
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The above series is known as the Taylor’s Series. This series provides a way to approximate functions using
polynomials. As you can see written in this form, the series is based heavily on the derivative of a continous
function £ (x).
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What | have done with (2) and (3) is to break the Taylor Series into two parts. (2) states that the partial sum
provides an approximation for the function in question. (3) indicates the remainder can be calculated from the
infinites series. Instead of representing the remainder as an infinite series, (3) can be represented in La Grange
form as:

~ f(n+1)(z) (X _ Z)n+l
R = i+ 1)

wherex<z<x, 0O x,<z<x 4

La Grange was a mathematician that proved that there exist a number z which exist between x and x, such that
the sum of the series (3) equals R(x) .

1.2 Taylor Series Connection

The purpose for starting out discussing the Taylor Series is because many derivations of the Runge-Kutta methods
base their parameters on the coefficients of the Taylor Series. In order to proceed further, it will be necessary to re-
write (1) into a form that will help show the connection between the Taylor Series and the Runge-Kutta methods.
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Let h = x—x, then (1) canbere —writtenassuch:
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fx) = flxy) + f(x,)(h) + 1 + 3 + 0 =
5
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The difference between (1) and (5) is purely cosmetic but the next transformation of (1) helps provide clarity
about the type of derivatives that are being discussed in this paper.

Y =f(x y(x) (6)

As can be seen in (6), the first derivative is based on two variables and ¥ s _a function of .t". It is important to
draw attention to (6) because it will be necessary to use the Chain-Rule and implicit_differentation to obtain the
derivations needed to show the Taylor Series and Runge-Kutta connection.

£ (X Y (2 F(Xn T £ (X, Vo) ()
21 " 31 " a1 *

Y1 = Y(x,) + f(Xn, Fn) (h) + )

FU X I O ) £ ()2
,,g (n+1)! (n+2)!

(7) varies from (5) and (1) in that instead of focusing on deriving a polynomial approximation for a function
f(x), the focus is on how to calculate an approximation for Y,,; based on values of X, Y,. It is important to
point out that (X, Yn) in (7) represents the 1st derivative. When looking at (1) or (5) and comparing it to (7), it
is important to note that /(x,) and Y(x,) are equivalent.

1.3 Euler’s Method

Euler’s method was discussed in my previous paper and it is here for two reasons. The first is that the approxima-
tion technique will be compared to the Runge-Kutta 4 method. The second reason is that is serves as a reference
for review as | show how to derive the Euler’s method from the definition of Runge-Kutta.

To approximate the solution of an initial value problem using Euler’s method perform the following steps:
Y =Xy, YX) =Y ®)
Step 1. Choose a nonzero number # to serve as an increment or step size along the x-axis and let
Xy =Xo+h Xo=Xi+h, X3g=Xo+h .. 9)

Step 2. Compute successively

Y1 =Y + f(Xo, Yo)h (10)
Yo = Y1 + f(Xq, Y)h (11)
Y3 =Y, + f(X2, Y2)h (12)
Y1 = Yo + F(Xn, Yn)h (13)

The numbers Y1, Y, , Y3, ... in the above equations are the approximations of Y(x;), Y(X2), Y(X3), ...
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(Source: Calculus A New Horizon: Author: Howard Anton)

1.4 Improved Euler’s Method

There is an enhanced version of Euler’s method known as the Improved Euler’s method. The Improved Euler’s
method is included in this paper to serves as a reference for review and it will be used in a comparison of accu-
racy against Euler’s method and Runge-Kutta 4 method. This method is defined as:

yn+l _ yn + h(f(an yn) + g(Xn+1, yﬁ+1)) (14)
ni1 = Y + f(Xn, Yn)h (15)

The value of Y, given by (15) (the original form of Euler’s method) predicts the value of Y(x,). The value of
Y1 defined by (14) corrects the estimate provided in (15)..

Source: Differential Equations with Boundary-Value Problems (Fifth Edition) Author(s): Dennis G. Zill
and Michael R. Cullen.
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2 Qualatative Approximation

2.1 Direction Fields

The slope interpretation of Y/’ makes it possible to get a qualitative evaluation of a differential equation. Direc-

tion fields or slope fields present a set of integral curve solutions within a region. These graphs are created by
calculating the slope of tangent lines at various points on each integral curve and then drawing only a small
segment of the actual tangent line. The picture on the left side of Figure 1. contains the actual solution curve for
(32) . The tangent line segments have been drawn on the actual solution curve to show how the tangent lines can
be used to to get a graphical picture of how the curve behaves. The picture on the right side of Figure 1. does not
contain the solution curve but it helps to emphasize how the tangent line segments can be used to see what the
actual solution curve looks like. Figures (2) and (3) represent direction field diagrams for (32) and (33)
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rigure 1. Graph of Particular Solution for Example 1
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3 Runge-Kutta Methods

The Runge-Kutta methods are a group of approximation methods used on 1st order differential initial value
problems of the type: ¥’ = f(x, y), Y(Xo) = Yy. Runge-Kutta methods have different orders that are usually
based on the degree of Taylor Polynomials. As in the case of Euler’s method, Runge-Kutta methods interprets Y’
as the slope of the tangent line then; the differential equation states that at each point (x,y) on the integral curve,
the slope of the tangent line V" = £(x, y)is equal to the value of Y(x) at that point.

3.1 Runge-Kutta Definition

In order to approximate a function, the following is used:

Yort =Yn+h(wiki+ woky + waksi oWy k) (16)

[Note : Thisslope function represents the weighted averages over theinterval X, = X = Xn411
The weights w;, i = 1,2,3, ...,m are constants that satisfy:
Wi+ wo + w3 + .. +w, =1
Each ki, i = 1,2,3,....m is the function f(x, y) evaluated at a selected point (x, y) for which X, < X < Xp;1.
What is important to point out is that m represents the order of the Runge-Kutta method

Source:: A First Course in Differential Equations (With Applied Modeling) Eighth Edition. Authors:
Dennis G. Zill.

3.1.1 Runge-Kutta Method One (RK1)

Manipulation of the parameters in (16) ,so that m =1, and w; =1 creates a Runge-Kutta Method of Order One
and (16) becomes

Yni1 = Yn + h(ky) (7)

d
And since Kk = f(Xn, Yn) = d_y then
X

Equation (17) is the same as the equation (13) which establishes Euler’s method to be the same as the 1st order
Runge-Kutta Method.

Taylor Series/Taylor Polynomial

A Taylor Polynomial of degree 1 written in the context of (7) looks like:

' 2
Yo = Yl + 1K, Yy + L0 O (18)
In order to derive a Taylor Polynomial of degree 1, two derivatives must be calculated with the last term being
the remainder/error term. If the last term of (18) is omitted , a review of the coefficients in front of the first
derivative shows that the choice of setting m =1, and w; =1 in (17) was not abirtrary but rather chosen to be in
agreement with (18). As stated earlier, the coefficients of the Taylor Polynomial/Series often influence the
parameters used to define the various Runge-Kutta methods.
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3.1.2 Runge-Kutta Method Two (RK2)
The definition for the RK2 method is:
Yot = Yo + h(wi kg + wo ko) where (19)

ki = f(Xn, Yn)
k2 :f(Xn +ha, yn + hﬂkl)

Taylor Series/Taylor Polynomial Of One Variable

In order to begin the derivation of RK2, it will be necessary to derive a Taylor Series of Degree 2 (remember the
last term is for error/remainder consideration).

" (Xn, Yn h2 f7(x, h3
Yo = Yl + 10X, Y oy + L IO T O (20)
LY o LL X Yo ()
d 2 ny Jn 3 n» In
yn+1 = y(xn) + d—i(Xn,yn)Xh+ dx 51 + ax 3 (21)

(20) and (21) are equivalent but they use a different notation. | will re-write the second and third derivatives of
(21) in terms of partial derivatives. The key here is to remember that in order to have a first derivative of the form
f(X, Y) means that we started with some function z = g(X, ) and performed implicit differentiation using the
Chain-Rule. The result of the implicit differentiation gave us another function of two variables.

The second derivative term of (21) written in terms of partials is:

d (dy B [0fXn Vo) | OF KXo, o) _ dy v
[ (d_X (Xnyyn))]xi = [ Ox + oy Xd_X(men) XE =y ]X? (22)

dx

The error/remainder term for (21) is:

d ( 4? " 8f
[7(7)]? =[W(X“’y“) ¥
) (23)

Pf
(Xn, Yn) Xf(Xn, Yn) +

aan 3X6y (an 'yn) Xf(Xn, yn) +

0 f
6_]/2 (Xn, Yn) X f(Xn, Yn) x F(Xn, Yn) +

of of aof . Jis . )&
@(men) X (‘a: (Xn, Yn) + @(Xnayn) X f(Xnuyn))]g!‘ =[y ]Xg‘“

Taylor Series/Polynomial of Multiple Variables

Up until this point, it has been useful to work with Taylor Series/Polynomials of one variable . One had to remem-
ber that we are working with a function like ' = f(x, y(X)) , where it was possible to apply implicit differentia-
tion and the Chain-Rule to obtain the derivatives that were needed. To better understand what is going on with the
derivation of the RK2 method, it will be useful to apply the multivariate version of Taylor Polynomial/Series.
The multivariate version is defined as:

. j
<1 |
f(xq, ..., xn) = Z{ —,{ E (Xk+ak)—j] f(X'1, oy X'n) (24)
=l — 0x;,
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Source: Taylor Series - Wolfram Mathematica

(19) provides the definition of the RK2 method. There are two parts of the definition that will need to be made to
conform to the Taylor Polynomial of two degrees. The first is:

h (wy k1)

This is the first derivative multiplied by the step size (h) and a constant w;. Using the coefficients of the first
derivative in (21) asaguide, yieldsthat w; =1is a good choice and this gives

d
L Xoy W) xhx1 = h(wy k) (25)
dx
The second part of (19) that will need to be made to conform to the Taylor Polynomial is::
h(wy k), where  ky =f(X, +ha, Y, + hBky)

Using (24) to help see how to construct k;, yeilds:

f(Xn +ha, Yy + hBky) = f(Xn, Yn) +[ (anyn)xafh + a_(Xn:«yn) X Bhx f(Xn, Yn)l + (26)
1
21
2]( 2f 2)(
(axh)zx—(xn,yn) + Zahzﬁxf(xn,yn)x—(xn,yn) + (BIf(Xn, Yn)* X —(Xn,yn)]

With (26) it is now possible to start seeing how the RK2 method is derived. First (20) will be re-written to use the
partial form of the second derivative as shown in (22) and we will ignore the error/remainder term.. This change
to (20) looks like:

Of (Xn, Yn) . Af(Xn, Yn) dy
ox

Ynir = Yx) + f(Xn, Fn) (h) +
dy

L (X, yn>] (27)

Now | will start to expand the definition provided in (19) using (25) and (26) , this gives the following:
Ynir = Yo + F(Xn, V) x ()X (wy) +

. of af . 28
(M x W) X[ F(Xn, Yn) +1[ x (Xn, Yn) xah + @ (Xny Yn) X BEXf(Xn, Yi)] (28)
In the next steps, | will start grouping terms so that it will be easier to see how the parameters wy ,w,,,and B are
choosen:

Yni1t = Yn +[ f( Xy, Mn)x(h)x (Wl)] + (M x W) x f(Xn, Yn) +

d (29)

f (Xn,yn)xahsz + —(Xn,yn> (w2) B X f(Xn, V)

. aof of
Yot = Yo + F(Xn, Vo) X (] w1 + w2)] + Hwy = (Xn, Y)xa + 3y (Xn, Yn) X B (30)

Look very close at (27) which is a Taylor Polynomial and (30) which is the definition of RK2, the first derivative
of (27) has the coefficients h and 1. In (30) the coefficients of the first derivative are h and (w; + w»), This
suggests that a choice of wy, = % , Wy = %will get the first derivative of (30) to match the first derivative of
(27). Now look at the coefficients of the second derivative of (27) and compare that with the coefficients of the
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second derivative of (30) since a choice of w, = %Was made then setting @ = 1, B = x 1 will put the second
derivative of (30) in agreement with (27).

As it has been shown, the RK2 method can be influenced by the Taylor Polynomial/Series but it must be pointed
out that the choices for the parameters wy,w,,a,and B could have been made differently and still satisfied (19).
This means that there are many different forms of RK2.

3.1.3 Runge-Kutta Method Four (RK4)

In this paper, the RK4 method will not be derived but the approach would be similar to what has been shown for
the RK1 and RK2 methods. The definition of the RK4 Method is:

yn+1 = yn + h(Wl ki+ woky + wiks + wyks) where (31)

ki = fF(Xn, Yp)

ko = f(Xn +hay, Yn + hBk;)

k3 = f(Xn +hay, Yy + hB, k1 + hB3 ko)

ko= f(Xn +haz, Yo + hB k1 + hBsky + hBgk3)
Source:: A First Course in Differential Equations (With Applied Modeling) Eighth Edition. Authors:
Dennis G. Zill.

4 Runge-Kutta Method 4 Example and Comparison

4.1 Example #1

The example is based on the problem done in the first paper which was used to compare Euler’s method and the
Improved Euler’s method. I will provide the background information so that you can see the solution

4.1.1 Special Note

One way to improve the accuracy of the approximation techniques mentioned in this paper is to decrease the step
size (h). For the sake of consistency, | have used the same step size so that an adequate comparison can be made.
There is one exception and that is with Table 3. and Figure 5. | chose a smaller step size than the one used for the
RK4 method to demonstrate the superiority of the RK4 method over Euler’s method.

Y =2x-3y+1 (32)
dy/dx +3y =2x +1

u — oJpeodx

u :ef3dx

u = e (The Integrating Factor)

d /dx[e¥*y] =e¥*@x+1)dx
fd /dx[e3x]=fe3x(2x +1)dx

fu dv=uv- fv du (Integration By Parts Rule)

letu= 2x+1, thendu = 2dx

e3x
letdv = e3%, thenv:fdv:fe?’xdx:T
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3X(2 1 2
fe3x(2x +1)dx= w——fe“dx

3 3
e3*2x +1)  2e8¥
3x
e?*2x +1)dx= -
f @x +1) . -
63Xy e3X(2x +1)  2e3%
- 3 9
B 2X 1 o G I Soluti
=3 + 3 + = (General Solution)
Y1 =5
5_ 2 1 c
379 " @x
38¢d ~
5 -
2X 1 38¢d . .
y = — (Particular Solution)

3 79" gex
Table 1. Results from the Various Approximation Techniques  Note: h=0.1 Exanple #1

Improved Euler’s

An Actual 24, Euler's Method #, 7 Runge-Kutter 4 %,
Xo =10 Yy =5.0 Yy =50 Yy =5.0 Yy =5.0

X;= 11 Y1 = 3.97234 Y, =38 Y, =399 Y1 = 3.97245
Xy,= 12 Y, = 3.22832 Y, =298 Y, = 3.25455 Y, = 3.22844
X3= 13 Y3 = 2.69441 Y3 = 2426 Y3 = 2.72364 Y3 = 2.69454
Xy= 14 Y, = 2.31615 Y, = 2.0582 Y, = 2.34511 Y, = 2.31639
Xs = 15 Ys = 2.05322 Y5 = 1.82074 Ys = 2.08011 Ys = 2.05334

Table 2. Analysis of Euler’s Method Approximation Note: h=0.1
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Percentage Relative

A Euler's Method %,  Actual 24, Absolute Error Error (%)
Xo =10 Yy =5.0 Yo =50 0.0 0.0

X;= 11 Y, =38 Y1 = 3.97234 0.17234 4.3385
Xo,= 12 Y, =298 Y, = 3.22832 0.24832 7.69193
X3= 13 Y3 = 2.426 Y3 = 2.69441 0.26841 9.96174
Xy= 14 Y, = 2.0582 Y, = 2.31615 0.25795 11.137
Xs = 15 Ys = 1.82074 Y5 = 2.05322 0.23248 11.3227

Figure 4. The Red curve represents % (Actual) The Blue curve represents
H, (Approximation Euler Method)

Table 3. Analysis of Euler’s Method Approximation. Note: h =0.05
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Percentage Relative

A Euler's Method %,  Actual 24, Absolute Error Error (%)
Xo = 1.00 Yy =5.0 Yo =50 0.0 0.0

X = 105 Y1 = 4.400 Y1 = 4.4452 0.045211 1.01708
X, = 110 Y, = 3.895 Y, = 3.97234 0.77343 1.94705
X3 = 115 Y3 = 3471 Y3 = 3.56998 0.099235 2.7797
X4 = 120 Y, = 31151 Y, = 3.22832 0.11317 3.50580
Xs = 1.25 Ys = 2.8718 Ys = 2.93888 0.12101 4.11769
Xe = 130 Ye = 25701 Y = 2.69440 0.12421 4.61023
X7 = 135 Y; = 2.3646 Y, = 2.48862 0.12396 4.98135
Xg = 140 Yg = 2.1949 Yg = 2.31615 0.12119 5.23252
Xg = 145 Yy = 2.0557 Yy = 2.17234 0.116631 5.36892
X0 = 1.50 Yo = 1.9423 Yo = 2.05322 0.110857 5.39921

1sb . L . .
1.0 1.1

Table 4. Analysis of Improved Euler’s Method Approximation

Figure 5. The Red curve represents % (Actual) The Blue curve represents
Y, (Approximation Euler Method)
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Improved Euler’s

Percentage Relative

An Method ¥, Actual 2, Absolute Error Error (%)
Xo = 1.0 Yo =50 Yo =50 0.0 0.0
X1 = 11 Y1 = 3.99 Y1 = 3.97234 0.01766 0.444843
Xo,= 1.2 Y, = 3.25455 Y, = 3.22832 0.02623 0.812628
X3= 13 Y3 = 2.72364 Y3 = 2.69441 0.02923 1.08500
Xs= 14 Y, = 2.34511 Y, = 2.31615 0.02896 1.25027
Xs = 15 Y5 = 2.08011 Y5 = 2.05322 0.02689 1.30974
Mn
5.0 \
N
45F \
a0k \\
i T,
‘\'\"
35k =,
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Figure 6. The Red curve represents % (Actual) The Blue Dashed curve represents
X, (Approximation Improved Euler Method).

Table 5. Analysis of Runge-Kutta 4 Method Approximation Note h=0.1
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Percentage Relative

A RK4 Method 4, Actual 24, Absolute Error Error (%)
Xop = 1.0 Yo =50 Yo =50 0.0 0.00
Xp= 11 Y, = 3.97243 Y, = 3.97234 0.00009 0.002266
Xp= 1.2 Y, = 3.22844 Y, = 3.22832 0.00012 0.003717
X3= 13 Y3 = 2.69454 Y3 = 2.69441 0.00013 0.004825
Xg= 14 Y4 = 2.31629 Y4 = 2.31615 0.00014 0.006045
Xs = 15 Ys = 2.05334 Y5 = 2.05322 0.00012 0.005844
Hn
5.0 \
N
45F \\
a0k \x
i .,
; .
| N
kR ‘H"k.._q_‘
i g
M B 1 1 P .-‘-.-‘-.-"'I Xa
1.0 1.1 1.1 1.3 14 1.3

Figure 4. The Red curve represents - (Actual) The Blue Dashed curve represents
Y (Approximation RK4 Method)

dy
dx

4.2 Example #2

This is an additional example comparing the various approximation techniques discussed in this paper.

(x+yPdx + 2xy + X¥*-1)dy =0, y(1) =1
dy[ny + X% - 1] =—(x+y)P’dx

[2xy+x2—1] = —(X+y)2

dy  —(x+y)

dx  [2xy+x2-1]

A first order differential equation of the form m(x,y)dx + n(x,y)dy = 0 is exact if:

Here a test for exactness takes place:

om 3 on

dy ~ 0x
m=(x+y)2
n:[2xy+x2—l]

om

—— =2(x+y)

dy

For Educational Use Oply
Copyright © 2012 - 2016. All Rights Reserved.
Owner of Passion’s Theory Website.

(33)



Article Title

on 2+ 9)

—_— X

0x Y
Proceed to find General and Particular Solution:

0
—a§=(2<+y)2

Fx, y) = f(x+y)2dx

Using substitution:

u=(x+y)2
du=dx

3
2 u
uwdu=—+rc1
f 3
Translate back into original variables:

3
f(X+y)2dX= (eryr 9(v)

3
of o
dy  dy

3
S ;y) + g(y)}

of
—5; =x+y? + g = (2xy + x? —1)

FW)=Q2xy + 2% -1)—(x+y)
gy =2xy + X2 -1 - A? —-2xy —y2
gy =-1-4

fg’(y)dy= f—l -y dy

3

Y
gJy=—"-y+c

3
3 _.3
Fx, y) = (X;y) Ty —y + ¢ (General Solution)
1= 8 L 1+
"33 ¢
2 8 + L.
33 ¢
_4 e
3 -
4 X3 ) ) ] _
33 + x“y + xy° —y (Particular Solution)

Table 6. Results from the Various Approximation Techniques  Note: h=0.1 Exanple #2
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Improved Euler’s Method

An Euler's Method 7 RK4 Method 4,
Xo=10 Yy = 1.0000 Yo = 1.0000 Yo = 1.0000
X =11 Y, = 0.8000 Y, = 0.8083 Y, = 0.8089
X, =12 Y, = 0.6167 Y, = 0.6309 Y, = 0.6319
X3 =13 Y3 = 0.4448 Y3 = 0.4630 Y3 =0.4645
Xy =14 Y, = 0.2799 Y, = 0.3006 Y, =0.3025
X5 =15 Y5 = 0.1181 Ys = 0.1399 Ys = 0.1423
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