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Introduction

Phase  portraits  are  used  to  provide  qualitative  information  about  linear  and  non-linear  differential  equations.  The
goal  of  this  paper  is  to  explain  the  scheme  used  to  classify  phase  portraits  of  two  dimensional  linear  systems.   Phase
portraits allow us  to gain insight about a differential system even when no other method is available.  A trajectory is the
primary component of a phase portrait. A trajectory can be thought of as the path taken from an initial point to an end point.
The initial point is represented  by the initial condition of the differential equation. When a differential equation is provided
without an initial condition, the portrait will show infinitely many trajectories. The phase portraits for the Romeo and Juliet
love affair show the initial condition point and a subset of the surrounding phase plane.   

The  shapes  of  the  portraits  shown  in  this  paper  represent  general  categories.  It  is  possible  to  see  linear  phase
portraits that meet the criteria described below but vary in shape (somewhat distorted) or orientation when viewed on the
phase plane. It has been said that  a picture is worth a 1000 words. Using that concept as a guideline, I have tried to keep
the mathematics to an absolute minimum.

 

 Math foundation

(1)R°
= aR + bJ

(2)J°
= cR + dJ

(3)
 R°

J°
 =  R

J
  a b

c d


(4)det 
 a b

c d
 = ab - c d

(5)det  a - l b

c d - l
 = det

 a b
c d

 - ldet
 1 0

0 1


(5a)det 
 a - l b

c d - l
 = a - l d - l - bc

(5b)det  a - l b
c d - l

 = l2 - la + d + ad - bc
(5c)l2 - la - ld + ad - bc = 0
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(5d)l1 =
a + d -

a2 - 2 ad + d2 + 4 bc
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2

(5e)l2 =
1
ÅÅÅÅÅ
2

 a + d +
a2 - 2 ad + d2 + 4 bc 

(6)Xt  = c1 μ k1 μ el1  t + c2 μ k2 μ el2  t

(7)D = l1 * l2

(8)t = l1 + l2

 (3) is a matrix representation for (1) and (2).  (4) defines the determinant based on the parameters (coefficients) of (1) and
(2).   In order to solve the problem, we need to obtain the characteristic equation.   The process begins with (5)  where the
variable l is introduced.  The solution to (5c) involves using the quadratic equation and after some algebraic manipulation
we obtain (5d) and (5e). The variables l1 and l2  are  called eigenvalues. 

(6)  is  the  general  solution.   In  order  to  find  the  specific  solution,  k1 and  k2  must  first  be  obtained.  k1 and  k2 are  called
eigenvectors.  This  happens through the use of  Gaussian elimination. Once obtained the next step is to solve for c1 and c2

which requires using the initial conditions, eigenvectors  and solving a simple algebraic system. 

 (7)  and  (8)  represent  the  determinant(D)  and  trace  (t)  of  the  matrix   
 a - l b

c d - l
 .  It  is  on  the  t  D  plane  that  the

classification of two dimensional  phase portraits begins. It is important to note that the determinant calculations used in
this paper are for a 2 x 2 matrix.  (4) shows the deteminant  (for n = 2) as defined in many linear algebra textbooks. The
determinant for a n × n matrix (where n >= 2) can be found using the Laplace expansion. 

Solved Problem

(9)r° = 5 r + 10 j

(10)j° = 10 r + 5 j

(11)
 r°

j
 =

 5 10

10 5
 
 r

j


(12)det  5 - l 10

10 5 - l
 = det

 5 10

10 5
 - ldet  1 0

0 1


(13)det
 5 - l 10

10 5 - l
 =  5 - l 5 - l - 10 10

(14)det
 5 - l 10

10 5 - l
 = l2 - 10 l - 75

(15)l1 = 15

(16)l2 = -5

(17)D = -75

(18)t = 10

Case l1

(19)
 5 - l 10

10 5 - l
 =

 5 - 15 10

10 5 - 15


(20)
 5 - 15 10

10 5 - 15
 =  -10 10

10 -10


(21)-10 k1 + 10 k2 = 0

(22)10 k1 - 10 k2 = 0

Through the use of Gaussian Elimination, it is determined that k1 = 1 and that k2 = 1
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Case  l2

(23)
 5 - -5 10

10 5 - -5  =
 10 10

10 10


(24)10 k1 + 10 k2 = 0

(25)10 k1 + 10 k2 = 0

Through the use of Gaussian Elimination, it is determined that k1 = 1 and that k2 = -1

At this point, we have determined the following about the solution: X(t) = c1 
 1

1
 e15 t + c2 

 -1

1
 e-5 t

Values for c1 and c2 must be found. This example has no initial conditions so the solution given is sufficient. If I had initial
conditions, the problem would be structured as done on  (26) where the initial conditions are placed in matrix form along
with the eigenvectors. The next step would be to convert from matrix form to algebraic form as done on  (27) and (28). The
last step involves some straight forward algebra. Figure 1 is the phase portrait (a Saddle Point) for this example.

(26)
 r0

j0

 = c1 
 1

1
 + c2 

 -1

1


(27)r0 = c1 - c2

(28)j0 = c1 + c2

Figure 1. 
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 Critical Points

A phase portrait’s form is determined largely by the type of critical point that is encountered. A critical point is defined as

the location where j£

ÅÅÅÅÅÅr£ = 0ÅÅÅÅ0 .  Without having to perform the calculations needed to obtain a specific solution, it is possible

to learn much about a linear system by examining the eigenvalues, trace and determinant. The following provides a straight
forward guide to determining the type of critical point that exists

Case 1 Real Distinct Eigenvalues  (l1 π l2 )             

Stable Node

Figure 2. 

A  stable  node  exists  when  both  eigenvalues  are  negative.  This  mean  the  following  conditions  have  been  met:
t2 - 4 D > 0, t < 0, D > 0. 
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Unstable Node

Figure 3. 

An unstable node occurs when both eigenvalues are positive. This means the following conditions have been met: t2 - 4D  >
0, t > 0, D > 0. 
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Saddle Point

Figure 4. 

Saddle points occur when the real eigenvalues have opposite signs.

 Exception

The key to the l values in this section is that they are distinct real values.    It is possible to encounter a scenario where: t2 -
4D  > 0, and  D  = 0.  This can occur when one of the l values equals 0 and the other does not. The fact that t2 - 4D  > 0 is
true does not classify the resulting phase portrait as a node. It turns out that in Figures 5 and 6 , there is not a single critical
point but rather an entire line of critical points as indicated by the thick black line.

6 PhasePortraits.nb

For Educational Use Only 
© 2012 - 2016. All Rights Reserved.  
Owner of Passion’s Theory Website. 



Figure 5. 
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Figure 6. 

Case 2 Repeated Real Eigenvalues   (l1 = l2 )

The parabola t2 - 4 D  0contains degenerate nodes and star nodes.
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Degenerate Stable node

Figure 7. 

When l1 < 0 , a degenerate stable node occurs. The trajectories all head toward the critical  point.
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Degenerate Unstable node

Figure 8. 

When l1 > 0, a degenerate stable node occurs. All of the trajectories are heading away from the critical point.

Star Node

A   star  node  will  have  repeated  real  eigenvalues  but  the  differential  system  in  matrix  form  looks  like: r°
j
 =

 a 0

0 a
 
 r

j

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Figure 9. 
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Case 3 Complex Eigenvalues  ( t2 - 4 D < 0, l1   a - ib, l2   a + ib)

Center

Figure 10. 

A center occurs when both l1 and l2 only have imaginary components (a  0).  
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Stable Spiral

Figure 11. 

When the real component in l1 and l2 is less than 0,  a stable spiral occurs.  It  is stable because all of  the trajectories flow
toward the critical point.
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Unstable Spiral

Figure 12. 

When the real component in l1 and l2 is greater than 0, an unstable spiral occurs. It is unstable because all trajectories flow
away from the critical point.
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Phase Portrait By Hand

Figure 13. 

Figure 14. 

 Figure 13 is a freehand attempt to draw a phase portrait.The approach used can also be done with non-linear differential
equations (there are a few more steps that I  have not  mentioned). The equations shown in (29) and (30) are based on the
model example (Fire and water) posted on the website. It is important to understand that I did not concern myself with an
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initial condition.  My goal was simply to get an approximate understanding of what was happening on the phase plane.  I
choose various values of r and j from the first, second, third, and fourth quadrants and plugged them directly into equations
(29) and (30). Figure 14 contains the values obtained. At each (r,j) point, I looked at the slope value and drew an arrow in
that direction.

(29)R°
= 2 R + 3 J

(30)J°
= -3 R - 2 J

Normal Form

The following has  been included to show how to reduce a linear  ordinary differential  equation (ode)  to a lower order.  In
this  example,  I  start  with  a  2nd  order  ode  and  reduce  it  to  a  1st  order  ode.  This  is  done  by  introducing  the  variable  y,
differentiating  it,  and  performing  substitution.  This  makes  it  possible  to  transform  a  differential  equation  into  a  simpler
form for qualitative analysis.

(31)m 
d2 x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅdt2

+ r 
dx
ÅÅÅÅÅÅÅÅÅÅdt + kx = 0

(32)
dx
ÅÅÅÅÅÅÅÅÅdt = y

(33)
dy
ÅÅÅÅÅÅÅÅÅdt =

d
ÅÅÅÅÅÅÅÅdt  dx

ÅÅÅÅÅÅÅÅÅdt   d2 x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅdt2

(34)

(35)m 
dy
ÅÅÅÅÅÅÅÅÅdt + ry + kx = 0
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