Power Series (Draft)

Introduction

This paper demonstrates how to use approximation techniques to solve linear differential equations of the following type:
$y^{n}+f_{n-1}(x) y^{(n-1)}+\ldots+f_{1}(x) y^{\prime}+f_{0}(x) y=Q(x)$
The two approaches described require initial conditions so that a particular solution can be found. Both approaches can be extended to solve a system of first order linear differential equations like the Romeo and Juliet problems.

Theory and Definition

Definition 1 Taylor series

$f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}}{2!}+\ldots+\frac{f^{n}\left(x_{0}\right)\left(x-x_{0}\right)^{n}}{n!}+\ldots$

Definition 2 Maclaurin series

$f(x)=f(0)+f^{\prime}(0)(x)+\frac{f^{\prime \prime}(0)(x)^{2}}{2!}+\ldots+\frac{f^{n}(0)(x)^{n}}{n!}+\ldots$
This difference between (2) and (3) is that $x_{0}=0$. The examples provided will have solutions based on the Maclaurin series because the stated initial conditions have $x=0$, when x is non-zero then the Taylor series should be used. The Maclaurin series is a special case of the Taylor series.

The following theorems are stated without proof.

Theorem 1

If $f(x)$ and $g(x)$ are defined by a power series when

$$
\begin{align*}
& f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n} \text { and } \tag{4}\\
& g(x)=\sum_{n=0}^{\infty} b_{n}\left(x-x_{0}\right)^{n} \text { then } a_{0}=b_{0}, a_{1}=b_{1}, a_{2}=b_{2}, \ldots \tag{5}
\end{align*}
$$

Theorem 2

If $f(x)$ is defined to be a power series then

$$
\begin{equation*}
a_{0}=f\left(x_{0}\right), a_{1}=f^{\prime}\left(x_{0}\right), a_{2}=\frac{f^{\prime \prime}\left(x_{0}\right)}{2!} \ldots, a_{n}=\frac{f^{n}\left(x_{0}\right)}{n!} \tag{6}
\end{equation*}
$$

Solution Approaches

Undetermined Coefficients Example

$$
\begin{equation*}
y^{\prime}-x y+x^{2}=0 \quad \text { where } \quad y(0)=2 \tag{7}
\end{equation*}
$$

Remember that a solution in the power of x has the form (replacing $f(x)$ with $y(x)$ and expanding terms):

$$
\begin{equation*}
y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\ldots \tag{8}
\end{equation*}
$$

(8) provides a way to define y but y^{\prime} is needed also, so take the derivative of (8) and now y^{\prime} is defined. If there was a $y^{\prime \prime}$ in the problem then it would be necessary to take the derivative of (9),

$$
\begin{equation*}
y^{\prime}=a_{1}+2 a_{2} x^{1}+3 a_{3} x^{2}+4 a_{4} x^{3}+\ldots \tag{9}
\end{equation*}
$$

Substitute (8) and (9) into (7) and obtain:

$$
\begin{equation*}
\left[a_{1}+2 a_{2} x^{1}+3 a_{3} x^{2}+4 a_{4} x^{3}\right]-x\left[a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}\right]+x^{2}=0 \tag{10}
\end{equation*}
$$

Group and simplify to get
$a_{1}+x\left(2 a_{2}-a_{0}\right)+x^{2}\left(1+3 a_{3}+a_{1}\right)+x^{3}\left(4 a_{4}+a_{2}\right)+x^{4}\left(5 a_{5}+a_{3}\right)=0$
Note: the initial conditions state that when $x=0$ (Maclaurin), that $y=2$. Because of Theorem 2 , we know that $a_{0}=2$. Using an identity property, set the coefficients of the powers of x to zero and then solve.
$a_{1}=0$

$$
\begin{array}{lll}
2 a_{2}-a_{0}=0 & 1+3 a_{3}+a_{1}=0 & 4 a_{4}+a_{2}=0 \\
2 a_{2}=a_{0} & 1+3 a_{3}-0=0 & 4 a_{4}=a_{2} \\
2 a_{2}=2 & 3 a_{3}=-1 & 4 a_{4}=1 \\
a_{2}=1 & a_{3}=-\frac{1}{3} & a_{4}=\frac{1}{4}
\end{array}
$$

Substitute the a_{*} values into (8) and the power series approximation of the solution is

$$
\begin{equation*}
y=2+x^{2}-\frac{1}{3} x^{3}+\frac{1}{4} x^{4} \tag{12}
\end{equation*}
$$

The approximation can be improved by expanding (8) and then performing (9) through (12).

Successive Derivatives Example

Using the same problem as the undetermined coefficient example:

$$
y^{\prime}-x y+x^{2}=0 \quad \text { where } \quad y(0)=2
$$

Change form to
$y^{\prime}-x y=-x^{2}$
We see that $Q(x)=-x^{2}$ and $f_{1}(x)=-x$. Please note that the initial conditions state that when $x=0$ that $y=2$, therefore plug these values into (13) and obtain

$$
\begin{equation*}
y^{\prime}-(0)(2)=0 \tag{14}
\end{equation*}
$$

Now take the derivative of (13) and obtain

$$
\begin{equation*}
y^{\prime \prime}-x y^{\prime}-y=-2 x \tag{15}
\end{equation*}
$$

Plug in the initial values and the derived value of y^{\prime} into (14) and obtain
$y^{\prime \prime}-0-2=0$
$y^{\prime \prime}=2$
Next take the derivative of (15)
$y^{\prime \prime \prime}-x y^{\prime \prime}-2 y^{\prime}=-2$.

Plug in the initial condition value of y, y^{\prime} and $y^{\prime \prime}$ into (17):
$y^{\prime \prime \prime}-(0)(2)-2(0)=-2$
$y^{\prime \prime \prime}=-2$
Now take the derivative of (17)

$$
\begin{equation*}
y^{\left(4^{\prime}\right)}-\mathrm{x} y^{\prime \prime \prime}-3 y^{\prime \prime}=0 \tag{18}
\end{equation*}
$$

Plug in the initial condition value of $y, y^{\prime}, y^{\prime \prime}$ and $y^{\prime \prime \prime}$ into (18):
$y^{\left(4^{\prime}\right)}-0(2)-3(2)=0$
$y^{\left(4^{\prime}\right)}=6$
Substitute the values for $y, y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}$ and $y^{\left(4^{4}\right)}$ into the Maclaurin series and obtain
$y(x)=2+\frac{2 x^{2}}{2!}-\frac{-2 x^{3}}{3!}+\frac{6 x^{4}}{4!}=2+x^{2}-\frac{-x^{3}}{3}+\frac{x^{4}}{4}$

