Approximate solution for System of 1st Order Differential Equations

Draft

Introduction

This paper demonstrates how to obtain approximate solutions using a power series technique.

Successive Derivative Approach

Note: For this type of problem, it is important to correctly identify the independent variable. In the example problem, x and y are both functions of t, consequently; differentiation is done with respect to t and not x or y.

Because my initial conditions start at $t=0$, my goal is to have a series expansion of the form:

$$
\begin{align*}
& x(t)=x(0)+x^{\prime}(0) t+\frac{x^{\prime \prime}(0) t^{2}}{2!}+\frac{x^{\prime \prime \prime}(0) t^{3}}{3!}+\ldots \tag{1}\\
& y(t)=y(0)+y^{\prime}(0) t+\frac{y^{\prime \prime}(0) t^{2}}{2!}+\frac{y^{\prime \prime \prime}(0) t^{3}}{3!}+\ldots \tag{2}
\end{align*}
$$

The example problem is (3).
$\frac{d x}{d t}=h x-k x y$
$\frac{d y}{d t}=k x y-p y$
Where h, k, and p are constants and

$$
x(0)=1, y(0)=1
$$

The first step is to make sure that I am working with a system of first order differential equations. Once confirmed, the second step is to start successively differentiating $\frac{d x}{d t}$. Starting with x^{\prime}, I find $x^{\prime \prime}$ then $x^{\prime \prime \prime}$. I do this because I want four terms of approximation for $x(t)$. If I wanted five terms of approximation, then I would differentiate $x^{\prime \prime \prime}$ to obtain $x^{(i v)}$. The third step is to start successively differentiating $\frac{d y}{d t}$ to obtain $y^{\prime \prime}$ and $y^{\prime \prime \prime}$. Again, I desire four terms of approximation for $y(t)$.

$$
\begin{align*}
x^{\prime \prime} & =h x^{\prime}-\mathrm{k} x^{\prime} y-k x y^{\prime} \tag{4}\\
x^{\prime \prime \prime} & =h x^{\prime \prime}-\mathrm{k} x^{\prime \prime} y-\mathrm{k} x^{\prime} y^{\prime}-\mathrm{k} x^{\prime} y^{\prime}-k x y^{\prime \prime} \tag{5}\\
& =h x^{\prime \prime}-k\left(x^{\prime \prime} y+2 x^{\prime} y^{\prime}+x y^{\prime \prime}\right)
\end{align*}
$$

$$
\begin{align*}
y^{\prime \prime} & =\mathrm{k} x^{\prime} y+\mathrm{k} x y^{\prime}-p y^{\prime} \tag{6}\\
y^{\prime \prime \prime} & =\mathrm{k} x^{\prime \prime} y+\mathrm{k} x^{\prime} y^{\prime}+\mathrm{k} x^{\prime} y^{\prime}+k x y^{\prime \prime}-p y^{\prime \prime} \tag{7}\\
& =\mathrm{k} x^{\prime \prime} y+2 k x^{\prime} y^{\prime}+k x y^{\prime \prime}-p y^{\prime \prime}
\end{align*}
$$

The fourth step is to find the coefficients of (1) and (2). To do this, I use the initial conditions of (3) and evaluate x^{\prime}, y^{\prime}, $x^{\prime \prime}, y^{\prime \prime}, x^{\prime \prime \prime}$, and $y^{\prime \prime \prime}$ (note: order of evaluation is important.) For the example problem, (8) and (9) represents the results of my evaluation.

$$
\begin{align*}
x^{\prime} & =h-k \tag{8}\\
x^{\prime \prime} & =h[h-k]-k[h-k]-k[k-p] \\
& =h^{2}-h k-h k+k^{2}-k^{2}+k p \\
& =h^{2}-2 h k+k p \\
x^{\prime \prime \prime} & =h\left[h^{2}-2 h k+k p\right]-(k)\left[h^{2}-2 h k+k p+2(h-k)(k-p)+k(h-k)+k(k-p)-p(k-p)\right] \\
& =h^{3}-2 h^{2} k+h k p-k\left[h^{2}+k p-2 h p-2 k^{2}+h k+p^{2}\right] \\
& =h^{3}-3 h^{2} k+3 h k p-k^{2} p+2 k^{3}-h k^{2}-k p^{2} \\
y^{\prime} & =k-p \tag{9}\\
y^{\prime \prime} & =k(h-k)+k(k-p)-p(k-p) \\
& =h k-k^{2}+k^{2}-k p-k p+p^{2} \\
& =h k-2 k p+p^{2} \\
y^{\prime \prime \prime} & =(k)\left[h^{2}-2 h k+k p\right]+(2)(k)(h-k)(k-p)+k\left[h k-2 k p+p^{2}\right]-p\left[h k-2 k p+p^{2}\right] \\
& =h^{2} k-2 h k^{2}+k^{2} p+2 h k^{2}-2 h k p-2 k^{3}+2 k^{2} p+h k^{2}-2 k^{2} p+k p^{2}-h k p+2 k p^{2}-p^{3} \\
& =h^{2} k+h k^{2}+k^{2} p-3 h k p-2 k^{3}+3 k p^{2}-p^{3}
\end{align*}
$$

The final step is to substitute the values found in (8) and (9) into (1) and (2) which yields (10) and (11).

$$
\begin{align*}
& x(t)=1+(h-k)(t)+\frac{\left(h^{2}-2 h k+k p\right) \times t^{2}}{2!}+\frac{\left(h^{3}-3 h^{2} k+3 h k p-k^{2} p+2 k^{3}-h k^{2}-k p^{2}\right) \times t^{3}}{3!}+\ldots \tag{10}\\
& y(t)=1+(k-p)(t)+\frac{\left(h k-2 k p+p^{2}\right) \times t^{2}}{2!}+\frac{\left(h^{2} k+\mathrm{h} k^{2}+k^{2} p-3 h k p-2 k^{3}+3 k p^{2}-p^{3}\right) \times t^{3}}{3!}+\ldots \tag{11}
\end{align*}
$$

