Approximate solution for System of 1st Order Differential Equations

Draft

Introduction

This paper demonstrates how to obtain approximate solutions using a power series technique.

Successive Derivative Approach

Note: For this type of problem, it is important to correctly identify the independent variable. In the example problem, x and y are both functions of t, consequently; differentiation is done with respect to t and not x or y.

Because my initial conditions start at t = 0, my goal is to have a series expansion of the form:

$$x(t) = x(0) + x'(0)t + \frac{x''(0)t^2}{2!} + \frac{x'''(0)t^3}{3!} + \dots$$
 (1)

$$y(t) = y(0) + y'(0)t + \frac{y''(0)t^2}{2!} + \frac{y'''(0)t^3}{3!} + \dots$$
 (2)

The example problem is (3).

$$\frac{dx}{dt} = hx - kxy \tag{3}$$

$$\frac{dy}{dt} = kxy - py$$

Where h, k, and p are constants and

$$x(0) = 1, y(0) = 1$$

The first step is to make sure that I am working with a system of first order differential equations. Once confirmed, the second step is to start successively differentiating $\frac{dx}{dt}$. Starting with x', I find x'' then x'''. I do this because I want four terms of approximation for x(t). If I wanted five terms of approximation, then I would differentiate x''' to obtain $x^{(iv)}$. The third step is to start successively differentiating $\frac{dy}{dt}$ to obtain y'' and y'''. Again, I desire four terms of approximation for y(t).

$$x'' = hx' - kx'y - kxy' \tag{4}$$

$$x''' = hx'' - kx''y' - kx'y' - kxy''$$

$$= hx'' - k(x''y + 2x'y' + xy'')$$
(5)

2 PowerSeriesSystem.nb

$$y'' = kx'y + kxy' - py'$$
(6)

$$y''' = kx'' y + kx' y' + kxy'' - py''$$

$$= kx'' y + 2kx' y' + kxy'' - py''$$
(7)

The fourth step is to find the coefficients of (1) and (2). To do this, I use the initial conditions of (3) and evaluate x', y', x'', y'', x''', and y''' (note: order of evaluation is important.) For the example problem, (8) and (9) represents the results of my evaluation.

$$x'' = h - k$$

$$x'' = h[h - k] - k[h - k] - k[k - p]$$

$$= h^{2} - hk - hk + k^{2} - k^{2} + kp$$

$$= h^{2} - 2hk + kp$$

$$x''' = h[h^{2} - 2hk + kp] - (k)[h^{2} - 2hk + kp + 2(h - k)(k - p) + k(h - k) + k(k - p) - p(k - p)]$$

$$= h^{3} - 2h^{2}k + hkp - k[h^{2} + kp - 2hp - 2k^{2} + hk + p^{2}]$$

$$= h^{3} - 3h^{2}k + 3hkp - k^{2}p + 2k^{3} - hk^{2} - kp^{2}$$

$$y' = k - p$$

$$y'' = k(h - k) + k(k - p) - p(k - p)$$

$$= hk - k^{2} + k^{2} - kp - kp + p^{2}$$

$$= hk - 2kp + p^{2}$$

$$y''' = (k)[h^{2} - 2hk + kp] + (2)(k)(h - k)(k - p) + k[hk - 2kp + p^{2}] - p[hk - 2kp + p^{2}]$$

$$= h^{2}k - 2hk^{2} + k^{2}p + 2hk^{2} - 2hkp - 2k^{3} + 2k^{2}p + hk^{2} - 2k^{2}p + kp^{2} - hkp + 2kp^{2} - p^{3}$$

The final step is to substitute the values found in (8) and (9) into (1) and (2) which yields (10) and (11).

 $= h^2 k + hk^2 + k^2 \nu - 3 hk\nu - 2 k^3 + 3 k\nu^2 - \nu^3$

$$x(t) = 1 + (h - k)(t) + \frac{\left(h^2 - 2hk + kp\right) \times t^2}{2!} + \frac{\left(h^3 - 3h^2k + 3hkp - k^2p + 2k^3 - hk^2 - kp^2\right) \times t^3}{3!} + \dots$$
 (10)

$$y(t) = 1 + (k - p)(t) + \frac{(hk - 2kp + p^2) \times t^2}{2!} + \frac{(h^2k + hk^2 + k^2p - 3hkp - 2k^3 + 3kp^2 - p^3) \times t^3}{3!} + \dots$$
 (11)