Approximate solution for System of 1st Order
Differential Equations
Draft

Introduction

This paper demonstrates how to obtain approximate solutions using a power series technique.

Successive Derivative Approach

Note: For this type of problem, it is important to correctly identify the independent variable. In the example problem, x and
y are both functions of £, consequently; differentiation is done with respect to ¢ and not x or y.

Because my initial conditions start at £ = 0, my goal is to have a series expansion of the form:
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The example problem is (3).
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Where A, k, and p are constants and

x(0) =1, »(0) = 1

The first step is to make sure that I am working with a system of first order differential equations. Once confirmed, the
second step is to start successively differentiating % . Starting with x’,1 find x” then x””’. I do this because I want four
terms of approximation for x(¢). If I wanted five terms of approximation, then I would differentiate x””’ to obtain x1). The

third step is to start successively differentiating % to obtain y” and y”’. Again, I desire four terms of approximation for
y().
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The fourth step is to find the coefficients of (1) and (2). To do this, I use the initial conditions of (3) and evaluate x’, y’,

x", y”, X’ ,and y"”’ (note: order of evaluation is important.) For the example problem, (8) and (9) represents the results of
my evaluation.
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The final step is to substitute the values found in (8) and (9) into (1) and (2) which yields (10) and (11).
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